Leadership:
Peidong Yang, Director
Omar Yaghi, Co-director
Michael Crommie, Co-director
History and Mission:
Nature is brimming with examples of efficiency, from the way plants capture energy in sunlight to the molecular machines that make muscles contract. The Kavli Energy NanoScience Institute (ENSI) at UC Berkeley, partnered with the Lawrence Berkeley National Laboratory, brings together some of the world’s top researchers from across the fields of materials science, physics, engineering, and biology. Their investigations into nature’s ways of managing energy at the nanoscale will lead to real change in our capacity to generate, store, and use energy. Together, these researchers aim to improve the performance of existing energy technologies and develop entirely new ways of harnessing energy for the world’s growing population.
The Kavli ENSI is a team of 23 world-class scientists from UC Berkeley and Berkeley Lab from physics, engineering, materials science and engineering. Together, they aim for two complementary goals that inform and build on each other: 1) gain a deeper understanding of how biological molecules capture and convert energy, and 2) engineer nanodevices that mimic and improve on nature’s tricks, using materials ranging from graphene and metal oxide frameworks to nanowires and nanolasers.
Many Kavli ENSI members have worked on nanoscience projects as varied as photosynthesis, nanomachine-enabled virus reproduction, nanotube motors and devices, engineered nanostructures, and ways to manipulate the movement of heat. They often collaborate with their peers, and sometimes with researchers in other disciples. Yet their collaborations tend to focus on the same types of problems. Someone working on nanotubes will collaborate with someone else working on nanotubes.
At Kavli ENSI, that nanotube researcher has the opportunity to interact with researchers who work on biological nanomachine motors. Researchers who want to control the flow of heat in nanoscopic devices get to talk with scientists who have faced similar challenges building devices to control the flow of light and electrical charges. This kind of collaboration is vital to making real change in the way deal with energy. You take inspiration from people working in other areas, and get expertise from many brilliant minds. Only a group of people working together like this can actually address the bigger picture of energy.
Learn more about ENSI: